117 research outputs found

    Відображення розвитку науки України та Євросоюзу в реферативній базі даних SCOPUS

    Get PDF
    Досліджено публікаційну активність України та Євросоюзу за галузями науки. Розглянуто динаміку кількості публікацій, що припадають на одного дослідника впродовж 1996-2010 рр. Виконано порівняння відображення кількості публікацій БД Scopus у ВВП та витратах на НДДКР країн в розрахунку на кожен 1 млн. дол. США.Исследована публикационная активность Украины и Евросоюза по отраслям науки. Рассмотрена динамика количества публикаций, которые приходятся на одного исследователя на протяжении 1996–2010 гг. Сделано сравнение отображения количества публикаций БД Scopus в ВВП и затратах на НДДКР стран в расчете на каждый 1 млн. дол. США.The publication activity by fields of science of Ukraine and the European Union was investigated. The dynamics of the number of publications per 1 researcher was considered during 1996–2010 years. Countries comparison by the number of publications reflecting in GDP and R&D expenditures per 1 million U.S. dollars measurements in the abstract database Scopus was done

    The Combinatorics of Alternating Tangles: from theory to computerized enumeration

    Full text link
    We study the enumeration of alternating links and tangles, considered up to topological (flype) equivalences. A weight nn is given to each connected component, and in particular the limit n0n\to 0 yields information about (alternating) knots. Using a finite renormalization scheme for an associated matrix model, we first reduce the task to that of enumerating planar tetravalent diagrams with two types of vertices (self-intersections and tangencies), where now the subtle issue of topological equivalences has been eliminated. The number of such diagrams with pp vertices scales as 12p12^p for pp\to\infty. We next show how to efficiently enumerate these diagrams (in time 2.7p\sim 2.7^p) by using a transfer matrix method. We give results for various generating functions up to 22 crossings. We then comment on their large-order asymptotic behavior.Comment: proceedings European Summer School St-Petersburg 200

    Poly(dimethylsiloxane) as a pre-coating in layer-by-layer films containing phosphotungstate nanoclusters electrochemically sensitive toward s-triazines

    Get PDF
    One of the major advantages of the Layer-by-Layer (LbL) deposition technique is the possible control of molecular architecture, not only to achieve optimized properties but also to seek synergy among different materials. In this study, LbL films containing nanoclusters of a Keggin type polyoxometalate, phosphotungstic acid (HPW), alternated with the polycation poly(allylamine hydrochloride) (PAH) were deposited on indium-tin oxide (ITO) substrates. The electrochemical properties of the hybrid LbL film investigated in acidic conditions indicated no significant desorption of HPW, when a layer of poly(dimethylsiloxane) terminated with 3-aminopropyl groups (PDMS) was previously deposited on the ITO substrate. Such effect occurred because PDMS prevents desorption of HPW from the hybrid film, as shown by X-ray Photoelectron Spectroscopy (XPS) analyses. The porous structures of the films were revealed by Fourier transform infrared reflection absorption spectroscopy, scanning electron microscopy and XPS. PDMS/PAH as a pre-coating allowed the HPW/PAH films to be sensitive to the electrochemical detection of the triazines atrazine and melamine. In conclusion, the precise control of the LbL films architecture is important to develop opportunities for new applications. © 2014 The Royal Society of Chemistry.One of the major advantages of the Layer-by-Layer (LbL) deposition technique is the possible control of molecular architecture, not only to achieve optimized properties but also to seek synergy among different materials. In this study, LbL films containin4562961229621FAPESP - FUNDAÇÃO DE AMPARO À PESQUISA DO ESTADO DE SÃO PAULOCNPQ - CONSELHO NACIONAL DE DESENVOLVIMENTO CIENTÍFICO E TECNOLÓGICOCAPES - COORDENAÇÃO DE APERFEIÇOAMENTO DE PESSOAL DE NÍVEL SUPERIORsem informaçãosem informaçãosem informaçãoDecher, G., (1997) Science, 277, p. 1232Stockton, W.B., Rubner, M.F., (1997) Macromolecules, 30, p. 2717Shimazaki, Y., Mitsuishi, M., Ito, S., Yamamoto, M., (1997) Langmuir, 13, p. 1385Kohli, P., Blanchard, G.J., (2000) Langmuir, 16, p. 8518Anzai, J., Kobayashi, Y., (2000) Langmuir, 16, pp. 2851-2856Shi, X., Shen, M., Mohwald, H., (2004) Prog. Polym. Sci., 29, p. 987Zucolotto, V., Ferreira, M., Cordeiro, M.R., Constantino, C.J.L., Moreira, W.C., Oliveira Jr., O.N., (2006) Sens. Actuators, B, 113, p. 809Alexeyeva, N., Tammeveski, K., (2008) Anal. Chim. Acta, 618, p. 140Liu, S., Volkmer, D., Kurth, D.G., (2003) J. Cluster Sci., 14, p. 405Kuhn, A., Mano, N., Vidal, C., (1999) J. Electroanal. Chem., 462, p. 187Cherstiouk, O.V., Simonov, A.N., Tsirlina, G.A., (2012) Electrocatalysis, 3, p. 230Lu, M., Lee, D., Xue, W., Cui, T., (2009) Sens. Actuators, A, 150, p. 280Han, B.H., Manners, I., Winnik, M.A., (2005) Chem. Mater., 17, p. 3160Perinotto, A.C., Caseli, L., Hayasaka, C.O., Riul Jr., A., Oliveira Jr., O.N., Zucolotto, V., (2008) Thin Solid Films, 516, p. 9002Moraes, M.L., De Souza, N.C., Hayasaka, C.O., Ferreira, M., Rodrigues-Filho, U.P., Riul Jr., A., Zucolotto, V., Oliveira Jr., O.N., (2009) Mater. Sci. Eng., C, 29, p. 442Liu, S., Mohwald, H., Volkmer, D., Kurth, D.G., (2006) Langmuir, 22, p. 1949Katsoulis, D.E., (1998) Chem. Rev., 98, p. 359Papaconstantinuou, E., (1989) Chem. Soc. Rev., 18, p. 1Timofeeva, M.N., (2003) Appl. Catal., A, 256, p. 19Sadakane, M., Steckhan, E., (1998) Chem. Rev., 98, p. 219Yamase, T., (1998) Chem. Rev., 98, p. 307De Oliveira Jr., M., Lopes De Souza, A., Schneider, J., Pereira Rodrigues-Filho, U., (2011) Chem. Mater., 23, p. 953Ferreira-Neto, E.P., De Carvalho, F.L.S., Ullah, S., Zoldan, V.C., Pasa, A.A., De Souza, A.L., Battirola, L.C., Rodrigues Filho, U.P., (2013) J. Sol-Gel Sci. Technol., 66, p. 363Souza, A.L., Marques, L.A., Eberlin, M.N., Nascente, P.A.P., Herrmann Jr., P.S.P., Leite, F.L., Rodrigues-Filho, U.P., (2012) Thin Solid Films, 520, p. 3574Liu, S., Tang, Z., (2010) Nano Today, 5, p. 267Dong, T., Ma, H., Zhang, W., Gong, L., Wang, F., Li, C., (2007) J. Colloid Interface Sci., 311, p. 523Ma, H., Dong, T., Wang, F., Zhang, W., Zhou, B., (2006) Electrochim. Acta, 51, p. 4965Cheng, L., Cox, J.A., (2002) Chem. Mater., 14, p. 6Gu, Y., Ma, H., O'Halloran, K.P., Shi, S., Zhang, Z., Wang, X., (2009) Electrochim. Acta, 54, p. 7194Kulesza, P.J., Chojak, M., Karnicka, K., Miecznikowski, K., Palys, B., Lewera, A., Wieckowski, A., (2004) Chem. Mater., 16, p. 4128Ernst, A.Z., Zoladek, S., Wiaderek, K., Cox, J.A., Kolary-Zurowska, A., Miecznikowski, K., Kulesza, P.J., (2008) Electrochim. Acta, 53, p. 3924Sun, L., Ca, D.V., Cox, J.A., (2005) J. Solid State Electrochem., 9, p. 816Liu, S., Kurth, D.G., Bredenkotter, B., Volkmer, D., (2002) J. Am. Chem. Soc., 124, p. 12279Cheng, L., Cox, J.A., (2001) Electrochem. Commun., 3, p. 285Feng, Y., Han, Z., Peng, J., Lu, J., Xue, B., Li, L., Ma, H., Wang, E., (2006) Mater. Lett., 60, p. 1588Xu, B., Xu, L., Gao, G., Jin, Y., (2007) Appl. Surf. Sci., 253, p. 3190Cheng, L., Dong, S., (2000) J. Electrochem. Soc., 147, p. 606Fernandes, D.M., Carapuça, H.M., Brett, C.M.A., Cavaleiro, A.M.V., (2010) Thin Solid Films, 518, p. 5881Cheng, L., Dong, S., (2000) J. Electroanal. Chem., 481, p. 168Liu, S., Volkmer, D., Kurth, D.G., (2004) Anal. Chem., 76, p. 4579Sosnowska, M., Goral-Kurbiel, M., Skunik-Nuckowska, M., Jurczakowski, R., Kulesza, P.J., (2013) J. Solid State Electrochem., 17, p. 1631Layla Mehdi, B., Rutkowska, I.A., Kulesza, P.J., Cox, J.A., (2013) J. Solid State Electrochem., 17, p. 1581Shiu, K.-K., Anson, F.C., (1991) J. Electroanal. Chem., 309, p. 115Martel, D., Kuhn, A., (2000) Electrochim. Acta, 45, p. 1829Chan, Z.C.Y., Lai, W.-F., (2009) Trends Food Sci. Technol., 20, p. 366Gammon, D.W., Aldous, C.N., Carr Jr., W.C., Sanborn, J.R., Pfeifer, K.F., (2005) Pest Manage. Sci., 61, p. 331Yu, J., Zhang, C., Dai, P., Ge, S., (2009) Anal. Chim. Acta, 651, p. 209Shoji, R., Takeuchi, T., Kubo, I., (2003) Anal. Chem., 75, p. 4882Donley, C., Dunphy, D., Paine, D., Carter, C., Nebesny, K., Lee, P., Alloway, D., Armstrong, N.R., (2002) Langmuir, 18, p. 450Sawyer, D.T., Sobkowiak, A., Roberts Jr., J.L., (1995) Electrochemistry for Chemists, pp. 68-78. , John Wiley & Sons, New York, 2nd edn, ch. 3Beamson, G., Briggs, D., (1992) High Resolution of XPS of Organic Polymers: The Scienta ESCA 300 Database, , John Wiley & Sons, ChichesterPope, M.T., Varga Jr., G.M., (1966) Inorg. Chem., 5, p. 1249Keita, B., Nadjo, L., (1987) J. Electroanal. Chem., 227, p. 77Stotter, J., Show, Y., Wang, S., Swain, G., (2005) Chem. Mater., 17, p. 4880Senthilkumar, M., Mathiyarasu, J., Joseph, J., Phani, K.L.N., Yegnaraman, V., (2008) Mater. Chem. Phys., 108, p. 403Vanleugenhague, C., Pourbaix, M., (1966) Atlas of Electrochemical Equilibra in Aqueous Solution, pp. 436-442. , ed. M. Pourbaix, Pergamon Press, OxfordDeltombe, E., De Zoubov, N., Vanleugenhague, C., Pourbaix, M., (1966) Atlas of Electrochemical Equilibra in Aqueous Solution, pp. 475-484. , ed. M. Pourbaix, Pergamon Press, OxfordPope, M.T., (1987) Comprehensive Coordination Chemistry, 3, p. 1039. , ed. G. Wilkinson, R. D. Gillard and J. A. McCleverty, Plenum Press, New YorkAkhtar, M.S., Cheralathan, K.K., Chun, J.M., Yang, O.B., (2008) Electrochim. Acta, 53, p. 6623Oliveira, F.C., Schneider, J., Siervo, A., Landers, R., Plepis, A.M.G., Pireaux, J.J., Rodrigues-Filho, U.P., (2002) Surf. Interface Anal., 34, p. 580Zhang, L., Jin, Q., Huang, J., Liu, Y., Shan, L., Wang, X., (2010) Appl. Surf. Sci., 256, p. 5911(2011) X-Ray Photoelectron Spectroscopy Database, Standard Database 20, Version 3.5, , http://srdata.nist.gov/xps/Version_his.aspxNunes De Carvalho, C., Botelho Do Rego, A.M., Amaral, A., Brogueira, P., Lavareda, G., (2000) Surf. Coat. Technol., 124, p. 70Lourenço, J.M.C., Ribeiro, P.A., Botelho Do Rego, A.M., Braz Fernandes, F.M., Moutinho, A.M.C., Raposo, M., (2004) Langmuir, 20, p. 8103Liu, Y.T., Deng, J., Xiao, X.L., Ding, L., Yuan, Y.L., Li, H., Li, X.T., Wang, L.L., (2011) Electrochim. Acta, 56, p. 4595Liao, C.W., Chen, Y.-R., Chang, J.-L., Zen, J.-M., (2011) J. Agric. Food Chem., 59, p. 9782Akter, H., Shaikh, A.A., Chowdhury, T.R., Rahmam, M.S., Bakshi, P.K., Saleh Ahammad, A.J., (2013) ECS Electrochem. Lett., 2 (8), p. 13Tran, H.V., Yougnia, R., Reisberg, S., Piro, B., Serradji, N., Nguyen, T.D., Tran, L.D., Pham, M.C., (2012) Biosens. Bioelectron., 31, p. 62Norouzi, P., Larijani, B., Ganjali, M.R., Faridbod, F., (2012) Int. J. Electrochem. Sci., 7, p. 10414Xu, G., Zhang, H., Zhong, M., Zhang, T., Lu, X., Kan, X., (2014) J. Electroanal. Chem., 713, p. 112Pesavento, M., D'Agostino, G., Biesuz, R., Alberti, G., (2009) Electroanalysis, 21, p. 604Svorc, L., Rievaj, M., Bustin, D., (2013) Sens. Actuators, B, 181, p. 294This work was supported by FAPESP, CNPq, CAPES and Brazilian Network nBioNe

    Rôle of dielectric effects in the red-green switching of porous silicon luminescence

    No full text
    Trapping of a carrier at an ionized impurity in porous silicon may be significantly hindered when the material is embedded in a high-dielectric-constant medium such as an aqueous electrolyte. This effect is estimated for a geometry of cylindrical silicon wires, and by modeling the two media with wavevector-independent dielectric constants. The self-image potential of the electron is taken into account, and the frequency dependence of the outer dielectric constant is treated in a simple manner. The results demonstrate that the impurity states are not accessible in the presence of the electrolyte, just due to the dielectric relaxation of the embedding medium. This result may apply to different kinds of localized electronic states, including those responsible for the red luminescence in dry porous silicon. This provides a plausible explanation for the red to green switching of the luminescence when the porous silicon is wet and suggests that using embedding media of intermediate dielectric constants should allow one to observe a progressive transition between red and green luminescence. Observation of porous silicon luminescence in solvents of various dielectric constants provides a preliminary test of this prediction.Le piégeage d'un porteur par une impureté ionisée dans le silicium poreux peut devenir inefficace lorsque le matériau est plongé dans un milieu de grande constante diélectrique tel qu'un électrolyte aqueux. Cet effet est estimé pour une géométrie de filaments cylindriques de silicium, les deux milieux étant modélisés par des constantes diélectriques indépendantes du vecteur d'onde. Le potentiel image de l'électron est pris en considération, et la dépendance en fréquence de la constante diélectrique du milieu extérieur est traitée de manière simple. Les résultats démontrent que les états liés sur l'impureté ne sont pas accessibles en présence de l'électrolyte, simplement en raison de la relaxation diélectrique de ce milieu. Ce résultat peut s'appliquer à différentes sortes d'états électroniques localisés, en particulier ceux responsables de la luminescence rouge du silicium poreux sec. Ceci founit une explication plausible du changement de la luminescence du rouge au vert lorsque le silicium poreux est mouillé, et suggère que l'utilisation de milieux extérieurs de constantes diélectriques intermédiaires devrait permettre d'observer une transition progressive entre les luminescences rouge et verte. L'observation de la luminescence du silicium poreux dans des solvants de diverses constantes diélectriques fournit un test préliminaire de cette prédiction
    corecore